Skip to main content

HSRP-CISCO



The Hot Standby Router Protocol, HSRP, provides a mechanism which is designed to support non-disruptive failover of IP traffic in certain circumstances. In particular, the protocol protects against the failure of the first hop router when the source host cannot learn the IP address of the first hop router dynamically. The protocol is designed for use over multi-access, multicast or broadcast capable LANs (e.g., Ethernet). HSRP is not intended as a replacement for existing dynamic router discovery mechanisms and those protocols should be used instead whenever possible. A large class of legacy host implementations that do not support dynamic discovery are capable of configuring a default router. HSRP provides failover services to those hosts.

Using HSRP, a set of routers work in concert to present the illusion of a single virtual router to the hosts on the LAN. This set is known as an HSRP group or a standby group. A single router elected from the group is responsible for forwarding the packets that hosts send to the virtual router. This router is known as the active router. Another router is elected as the standby router. In the event that the active router fails, the standby assumes the packet forwarding duties of the active router. Although an arbitrary number of routers may run HSRP, only the active router forwards the packets sent to the virtual router.

To minimize network traffic, only the active and the standby routers send periodic HSRP messages once the protocol has completed the election process. If the active router fails, the standby router takes over as the active router. If the standby router fails or becomes the active router, another router is elected as the standby router.

On a particular LAN, multiple hot standby groups may coexist and overlap. Each standby group emulates a single virtual router. For each standby group, a single well-known MAC address is allocated to the group, as well as an IP address. The IP address SHOULD belong to the primary subnet in use on the LAN, but MUST differ from the addresses allocated as interface addresses on all routers and hosts on the LAN, including virtual IP addresses assigned to other HSRP groups.

If multiple groups are used on a single LAN, load splitting can be achieved by distributing hosts among different standby groups.

Popular posts from this blog

AD LDS – Syncronizing AD LDS with Active Directory

First, we will install the AD LDS Instance: 1. Create and AD LDS instance by clicking Start -> Administrative Tools -> Active Directory Lightweight Directory Services Setup Wizard. The Setup Wizard appears. 2. Click Next . The Setup Options dialog box appears. For the sake of this guide, a unique instance will be the primary focus. I will have a separate post regarding AD LDS replication at some point in the near future. 3. Select A unique instance . 4. Click Next and the Instance Name dialog box appears. The instance name will help you identify and differentiate it from other instances that you may have installed on the same end point. The instance name will be listed in the data directory for the instance as well as in the Add or Remove Programs snap-in. 5. Enter a unique instance name, for example IDG. 6. Click Next to display the Ports configuration dialog box. 7. Leave ports at their default values unless you have conflicts with the default values. 8. Click N...

HOW TO EDIT THE BCD REGISTRY FILE

The BCD registry file controls which operating system installation starts and how long the boot manager waits before starting Windows. Basically, it’s like the Boot.ini file in earlier versions of Windows. If you need to edit it, the easiest way is to use the Startup And Recovery tool from within Vista. Just follow these steps: 1. Click Start. Right-click Computer, and then click Properties. 2. Click Advanced System Settings. 3. On the Advanced tab, under Startup and Recovery, click Settings. 4. Click the Default Operating System list, and edit other startup settings. Then, click OK. Same as Windows XP, right? But you’re probably not here because you couldn’t find that dialog box. You’re probably here because Windows Vista won’t start. In that case, you shouldn’t even worry about editing the BCD. Just run Startup Repair, and let the tool do what it’s supposed to. If you’re an advanced user, like an IT guy, you might want to edit the BCD file yourself. You can do this...

DNS Scavenging.

                        DNS Scavenging is a great answer to a problem that has been nagging everyone since RFC 2136 came out way back in 1997.  Despite many clever methods of ensuring that clients and DHCP servers that perform dynamic updates clean up after themselves sometimes DNS can get messy.  Remember that old test server that you built two years ago that caught fire before it could be used?  Probably not.  DNS still remembers it though.  There are two big issues with DNS scavenging that seem to come up a lot: "I'm hitting this 'scavenge now' button like a snare drum and nothing is happening.  Why?" or "I woke up this morning, my DNS zones are nearly empty and Active Directory is sitting in a corner rocking back and forth crying.  What happened?" This post should help us figure out when the first issue will happen and completely av...